Problems for Seminar 5

Check the canvas page of the course for information on how seminars are run and what you are expected to do before and during the seminars.

The seminar starts with a test. The problem will be about determining an orthonormal basis for a given vector subspace of \mathbb{R}^{n}.

In the seminar, the following problems will be discussed.
Problem 1. Consider the matrix

$$
A=\left[\begin{array}{rrrr}
-1 & -1 & 0 & 1 \\
-3 & -1 & 1 & 1 \\
2 & 0 & -1 & 0
\end{array}\right]
$$

(a) Determine a basis for the nullspace, $\operatorname{Null}(A)$.
(b) Determine a basis for the column space, $\operatorname{Col}(A)$.

Problem 2. Let

$$
A=\left[\begin{array}{cc}
-2 & 0 \\
1 & 1 \\
1 & -1
\end{array}\right], \quad B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] .
$$

(a) Determine all vectors which lie in both $\operatorname{Col}(A)$ and $\operatorname{Col}(B)$. Explain why all vectors which lie in both $\operatorname{Col}(A)$ and $\operatorname{Col}(B)$ form a subspace of \mathbb{R}^{3}, and compute its dimension.
(b) Give a vector in $\operatorname{Col}(A)$ which does not lie in $\operatorname{Col}(B)$.

Problem 3. Let

$$
\mathcal{E}=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

be the standard basis for \mathbb{R}^{2}, and let

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\} .
$$

(a) Show that \mathcal{B} is a basis for \mathbb{R}^{2}.
(b) Compute the coordinate vector $[\vec{v}]_{\mathcal{B}}$ for the vector $\vec{v}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
(c) Compute matrices M and N such that

$$
[\vec{x}]_{\mathcal{E}}=M[\vec{x}]_{\mathcal{B}} \quad \text { och } \quad[\vec{x}]_{\mathcal{B}}=N[\vec{x}]_{\mathcal{E}}
$$

for all vectors $\vec{x} \mathbf{i} \mathbb{R}^{2}$.

Problem 4. A line $y=k x+m$ is to fit the points $(-2,1),(1,2),(4,2)$, and $(7,6)$.
(a) Determine the values of the constants k and m giving the bet fit in the sense of least squares.
(b) Sketch the line together with the points in a coordinate system and illustrate what it is that is minimized for these values of the constants.

Problem 5. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ an arbitrary but unspecified map.
(a) Why is the dimension of the image $\operatorname{Im}(T)$ of T at most 2 ?
(b) Let \vec{b} be a vector in \mathbb{R}^{3} which lies outside of the range $\operatorname{Im}(T)$. Explain how one can find the vectors \vec{x} minimizing $\|L(\vec{x})-\vec{b}\|$.
(c) Apply b) to find the smallest value of $\|L(\vec{x})-\vec{b}\|$, where $L(\vec{x})=\left(x_{1},-x_{2}, x_{1}+\right.$ $\left.x_{2}\right)$, and $\vec{b}=(1,2,3)$.

Miscellaneous

Here are some other topics that are important and interesting to discuss.

- What is an orthogonal matrix?
- What is the purpose of the least squares method?
- What is the connection between the least squares method and (orthogonal) projections?

