Numerical methods for matrix functions SF2524 - Matrix Computations for Large-scale Systems

Lecture 14: Specialized methods

Specialized methods

- Matrix exponential scaling-and-squaring (expm(A))
- Matrix square root (sqrtm(A))
- Matrix sign function

From basic properties of matrix functions:

$$\exp(A) = \exp(A/2) \exp(A/2).$$

Repeat:

$$\exp(A) = \exp(A/4) \exp(A/4) \exp(A/4) \exp(A/4).$$

. . .

For any j

$$\exp(A) = \left(\exp(A/2^j)\right)^{2^j}$$

Repeated squaring

Given $C = \exp(A/2^j)$, we can compute $\exp(A)$ with j matrix-matrix multiplications: $C_0 = C$

$$C_i = C_{i-1}^2, i = 1, \dots, j$$

We have $C_i = \exp(A)$.

* Matlab: squaring property *

Computing $\exp(A/m)$

How to compute $\exp(A/m)$, where $m=2^j$ for large m?

Note: $\left\|\frac{1}{m}A\right\| \ll 1$ when m is large.

Use approximation of matrix exponential which is good close to origin.

Idea 0: Naive

Use Truncated Taylor with expansion $\mu=0$

$$\exp(B) \approx I + \frac{1}{1!}B + \cdots + \frac{1}{N!}B^N$$

From Theorem 4.1.2:

Error
$$\sim ||B||^N = ||A/m||^N = ||A||^N/m^N$$

 \Rightarrow fast if when $m \gg ||A||$

Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:

$$\exp(B) \approx N_{pq}(B)^{-1}D_{pq}(B)$$

where $N_{pq}, D_{pq} \in P_p$. One can show that this approximation better than truncated Taylor. More precisely,

Parameters p and q can be chosen such that a specific error can be guaranteed. * Matlab demo with rational approx * Matrix square root PDF Lecture notes 4.3.2

Suppose

$$\lambda(A) \cap (-\infty, 0] = \emptyset$$

Then, with $f(z) = \sqrt{z}$ the matrix function

$$F = f(A)$$

is well-defined with the Jordan definition or Cauchy definition. Moreover,

$$F^2 = A$$

- * Proof on black board. *
- * MATLAB demo *

Newton's method for scalar-valued equation:

$$g(x) = x^2 - a = 0$$

Simplifies to

$$x_{k+1} = \ldots = \frac{1}{2}(x_k + ax_k^{-1})$$

Newton's method for matrix square root (Newton-SQRT)

$$X_0 = A$$

 $X_{k+1} = \frac{1}{2}(X_k + AX_k^{-1})$

Prove equivalence with Newton's method for $A = A^T$

Unfortunately: Newton's method for matrix square root is numerically unstable

Better in terms of stability:

Denman-Beavers algorithm

$$\begin{array}{rcl} Y_0 & = & I \\ X_{k+1} & := & \frac{1}{2}(X_k + Y_k^{-1}) \\ Y_{k+1} & := & \frac{1}{2}(Y_k + X_k^{-1}) \end{array}$$

Properties of Denman-Beavers:

 Equivalent to Newton-SQRT in exact arithmetic, but very different in finite arithmetic

proof on black board

- Much less sensitive to round-off than Newton-SQRT
- One step requires two matrix inverses

Matrix sign function PDF Lecture notes 4.3.3

Scalar-valued sign function

$$sign(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Now: Matrix version.

Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control (Riccati equation)

For all cases except x = 0:

$$|x| = \sqrt{x^2}$$

 $sign(x) = \frac{|x|}{x} = \frac{\sqrt{x^2}}{x}$

Definition matrix sign

$$sign(A) = \sqrt{A^2}A^{-1}$$

Naive method

Compute directly

$$sign(A) = \sqrt{A^2}A^{-1}$$

We can do better: Combine Newton-SQRT with A^2 and A^{-1}

* Derivation based on defining $S_k = A^{-1}X_k$ where X_k Newton-SQRT for $\sqrt{A^2}*\cdots$

Matrix sign iteration

$$S_0 = A$$

 $S_{k+1} = \frac{1}{2}(S_k + S_k^{-1})$

Convergence

- Local quadratic convergence follows from Newton equivalence.
- We even have global convergence ...

Theorem (Global quadratic convergence of sign iteration)

Suppose $A \in \mathbb{R}^{n \times n}$ has no eigenvalues on the imaginary axis. Let S = sign(A), and S_k be generated by Sign iteration. Let

$$G_k := (S_k - S)(S_k + S)^{-1}.$$
 (1)

Then,

•
$$S_k = S(I + G_k)(I - G_k)^{-1}$$
 for all k ,

- $G_k \to 0$ as $k \to \infty$,
- $S_k \to S$ as $k \to \infty$, and

•

$$||S_{k+1} - S|| \le \frac{1}{2} ||S_k^{-1}|| ||S_k - S||^2.$$
 (2)