Numerical methods for matrix functions
SF2524 - Matrix Computations for Large-scale Systems

Lecture 14: Specialized methods
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Specialized methods
@ Matrix exponential - scaling-and-squaring (expm(A))
@ Matrix square root (sqrtm(A))

@ Matrix sign function
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From basic properties of matrix functions:
exp(A) = exp(A/2) exp(A/2).
Repeat:
exp(A) = exp(A/4) exp(A/4) exp(A/4) exp(A/4).
For any j
)]
exp(A) = (exp(A/QJ))

Repeated squaring

Given C = exp(A/2)), we can compute exp(A) with j matrix-matrix
multiplications: Gy = C

CG=C?, i=1,...,j

We haVe C/ = eXp(A) * Matlab: squaring property *

V.
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Computing exp(A/m)

How to compute exp(A/m), where m = 2/ for large m?
Note: ||1A|| <1 when m is large.
Use approximation of matrix exponential which is good close to origin.

Idea 0: Naive
Use Truncated Taylor with expansion p =0

1 1 _n
exP(B)N/—i-ﬁB-i-"'-i-mB
From Theorem 4.1.2:
Error ~ ||B|Y = |A/m|" = | A|N/m"

= fast if when m > ||A]|
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Idea 1: Better (rational approx)

Use a rational approximation of matrix expoential:
=il
exp(B) ~ Npg(B) ™" Dpq(B)

where Npg, Dpg € Pp.One can show that this approximation better than
truncated Taylor.More precisely,
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(a) Error in Padé approximation (b) [Rpq(aA) —exp(ad)|/|exp(ad)|

Parameters p and g can be chosen such that a specific error can be
guara nteed. * Matlab demo with rational approx *
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Matrix square root
PDF Lecture notes 4.3.2
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Suppose
AMA)N(—00,0] =0

Then, with f(z) = \/z the matrix function
F=1f(A)
is well-defined with the Jordan definition or Cauchy definition. Moreover,
FP=A

* Proof on black board. *

* MATLAB demo *
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Newton's method for scalar-valued equation:
— 2 —
gx)=x"—a=0

Simplifies to

1 _
Xkp1 = ... = E(xk—i—axk D)

Newton's method for matrix square root (Newton-SQRT)

Xo = A
1 _
Xiy1 = E(Xk+AXk h

Prove equivalence with Newton's method for A = AT
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Unfortunately: Newton's method for matrix square root is numerically
unstable

Better in terms of stability:

Denman-Beavers algorithm

Yo = |
1 1
Xk+1 = E(Xk —+ Yk )
1 _
Yir1 = §(Yk+Xk b

Properties of Denman-Beavers:

@ Equivalent to Newton-SQRT in exact arithmetic, but very different in
finite arithmetic

proof on black board

@ Much less sensitive to round-off than Newton-SQRT

@ One step requires two matrix inverses
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Matrix sign function
PDF Lecture notes 4.3.3
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Scalar-valued sign function

-1 ifx<0
sign(x) =<0 ifx=0
1 if x>0
2
1
0 °
1
-2
S0 -5 0 5 10

Now: Matrix version.
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Applications

Quantum Chemistry (linear scaling DFT-code) and systems and control
(Riccati equation)

For all cases except x = 0:

X = V2

. x| Vx?
sign(x) = —=—
X X
Definition matrix sign
sign(A) = VA2A™L J
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Naive method
Compute directly

sign(A) = VA2A™!

We can do better: Combine Newton-SQRT with A% and A~1

* Derivation based on defining Sy = A~1X) where X, Newton-SQRT for
VAZ ...

Matrix sign iteration

So =

Skir = =(Sk+ S5

Nl = D>
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Convergence

@ Local quadratic convergence follows from Newton equivalence.
@ We even have global convergence ...

Theorem (Global quadratic convergence of sign iteration)

Suppose A € R"*" has no eigenvalues on the imaginary axis. Let
S =ssign(A), and Sy be generated by Sign iteration. Let

Gk = (S« —5)(Sk+5)_1. (1)
Then,
o Sk =S(I + Gp)(I — Gx)~! for all k,
o Gy — 0 as k — oo,
@ S, — S as k — oo, and

I
15kt1 = S < 511511k — SII*- (@)
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