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Agenda QR-method

1 Decompositions (previous lecture)
I Jordan form
I Schur decomposition
I QR-factorization

2 Basic QR-method
3 Improvement 1: Two-phase approach

I Hessenberg reduction (previous lecture)
I Hessenberg QR-method

4 Improvement 2: Acceleration with shifts

5 Convergence theory
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Improvement 1: Two-phase approach (recap)

We will separate the computation into two phases:


× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

 →
Phase 1


× × × × ×
× × × × ×

× × × ×
× × ×

× ×

 →
Phase 2


× × × × ×

× × × ×
× × ×

× ×
×



Phases

Phase 1: Reduce the matrix to a Hessenberg with similarity
transformations (Section 2.2.1 in lecture notes)

Phase 2: Specialize the QR-method to Hessenberg matrices (Section
2.2.2 in lecture notes) ← NOW
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Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg is hessenberg.m *

Theorem (Theorem 2.2.4)

If the basic QR-method is applied to a Hessenberg matrix, then all iterates
Ak are Hessenberg matrices.

Recall: basic QR-step is O(m3).

Hessenberg structure can be exploited such that we can carry out a
QR-step with less operations.
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Definition (Givens rotation)

The matrix G (i , j , c , s) ∈ Rn×n where c2 + s2 = 1 corresponding to a
Givens rotation is defined by

G (i , j , c , s) :=


I

c −s
I

s c
I

 ,
which deviates from identity at row and column i and j .

ej

ei

x

Gx
θ

Properties

G ∗ = G−1

Gz can be computed with
O(1) operations

· · · (show on white board)
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The Q-matrix in the QR-factorization of a Hessenberg matrix can be
factorized as a product of n − 1 Givens rotators.

Theorem (Theorem 2.2.6)

Suppose A ∈ Cn×n is a Hessenberg matrix. Let Hi be generated as follows
H1 = A

Hi+1 = GT
i Hi , i = 1, . . . , n − 1

where
Gi = G (i , i + 1, (Hi )i ,i/ri , (Hi )i+1,i/ri )

and ri =
√

(Hi )2i ,i + (Hi )2i+1,i and we assume ri 6= 0. Then, Hn is upper

triangular and
A = (G1G2 · · ·Gn−1)Hn = QR

is a QR-factorization of A.

* Matlab: Explicit QR-factorization of Hessenberg qr givens.m *
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Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix
but only implicitly apply the Givens rotators

: Let

Ak−1 = (G1G2 · · ·Gn−1)Rn

and
Ak = Rn(G1G2 · · ·Gn−1) = (· · · ((RnG1)G2) · · · )Gn−1

Complexity of one QR-step for a Hessenberg matrix

We need to apply 2(n − 1) givens rotators to compute one QR-step.

One givens rotator applied to a vector can be computed in O(1)
operations.

One givens rotator applied to matrix can be computed in O(n)
operations.

⇒
the complexity of one Hessenberg QR step = O(n2)
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Givens rotators only modify very few elements.
Several optimizations possible. ⇒
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