QR-method lecture 3

SF2524 - Matrix Computations for Large-scale Systems

Agenda QR-method

© Decompositions (previous lecture)
Jordan form
Schur decomposition
QR-factorization
(2) Basic QR-method
(3) Improvement 1: Two-phase approach

Hessenberg reduction (previous lecture)
Hessenberg QR-method
(9) Improvement 2: Acceleration with shifts
(3) Convergence theory

Agenda QR-method

© Decompositions (previous lecture)
Jordan form
Schur decomposition
QR-factorization
(2) Basic QR-method
(3) Improvement 1: Two-phase approach

Hessenberg reduction (previous lecture)
Hessenberg QR-method
(9) Improvement 2: Acceleration with shifts
(3) Convergence theory

Improvement 1: Two-phase approach (recap)

We will separate the computation into two phases:

Improvement 1: Two-phase approach (recap)

We will separate the computation into two phases:

$$
\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times
\end{array}\right] \quad \underset{\text { Phase 1 }}{ } \quad\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & & \times & \times
\end{array}\right] \quad \underset{\text { Phase 2 }}{ } \quad\left[\begin{array}{ccccc}
\times & \times & \times & \times & \times \\
& \times & \times & \times & \times \\
& & \times & \times & \times \\
& & \times & \times \\
& & & & \times
\end{array}\right]
$$

Phases

- Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)

Improvement 1: Two-phase approach (recap)

We will separate the computation into two phases:

Phases

- Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)
- Phase 2: Specialize the QR-method to Hessenberg matrices (Section 2.2.2 in lecture notes)

Improvement 1: Two-phase approach (recap)

We will separate the computation into two phases:

Phases

- Phase 1: Reduce the matrix to a Hessenberg with similarity transformations (Section 2.2.1 in lecture notes)
- Phase 2: Specialize the QR-method to Hessenberg matrices (Section 2.2.2 in lecture notes) \leftarrow NOW

Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)
If the basic $Q R$-method is applied to a Hessenberg matrix, then all iterates A_{k} are Hessenberg matrices.

Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)
If the basic $Q R$-method is applied to a Hessenberg matrix, then all iterates A_{k} are Hessenberg matrices.

Recall: basic QR-step is $\mathcal{O}\left(m^{3}\right)$.

Phase 2: Hessenberg QR-method

A QR-step on a Hessenberg matrix is a Hessenberg matrix:

* Matlab demo showing QR-step: hessenberg_is_hessenberg.m *

Theorem (Theorem 2.2.4)
If the basic $Q R$-method is applied to a Hessenberg matrix, then all iterates A_{k} are Hessenberg matrices.

Recall: basic QR-step is $\mathcal{O}\left(m^{3}\right)$.
Hessenberg structure can be exploited such that we can carry out a QR-step with less operations.

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ where $c^{2}+s^{2}=1$ corresponding to a Givens rotation is defined by

$$
G(i, j, c, s):=\left[\begin{array}{lllll}
l & & & & \\
& c & & -s & \\
& & I & & \\
& s & & c & \\
& & & & I
\end{array}\right]
$$

which deviates from identity at row and column i and j.

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ where $c^{2}+s^{2}=1$ corresponding to a Givens rotation is defined by

$$
G(i, j, c, s):=\left[\begin{array}{lllll}
l & & & & \\
& c & & -s & \\
& & l & & \\
& s & & c & \\
& & & & l
\end{array}\right]
$$

which deviates from identity at row and column i and j.

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ where $c^{2}+s^{2}=1$ corresponding to a Givens rotation is defined by

$$
G(i, j, c, s):=\left[\begin{array}{lllll}
l & & & & \\
& c & & -s & \\
& & I & & \\
& s & & c & \\
& & & & I
\end{array}\right]
$$

which deviates from identity at row and column i and j.

Properties

- $G^{*}=G^{-1}$

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ where $c^{2}+s^{2}=1$ corresponding to a Givens rotation is defined by

$$
G(i, j, c, s):=\left[\begin{array}{lllll}
l & & & & \\
& c & & -s & \\
& & I & & \\
& s & & c & \\
& & & & I
\end{array}\right]
$$

which deviates from identity at row and column i and j.

Properties

- $G^{*}=G^{-1}$
- $G z$ can be computed with $O(1)$ operations

Definition (Givens rotation)

The matrix $G(i, j, c, s) \in \mathbb{R}^{n \times n}$ where $c^{2}+s^{2}=1$ corresponding to a Givens rotation is defined by

$$
G(i, j, c, s):=\left[\begin{array}{lllll}
l & & & & \\
& c & & -s & \\
& & I & & \\
& s & & c & \\
& & & & l
\end{array}\right]
$$

which deviates from identity at row and column i and j.

Properties

- $G^{*}=G^{-1}$
- $G z$ can be computed with $O(1)$ operations
- ... (show on white board)

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of $n-1$ Givens rotators.

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of $n-1$ Givens rotators.

Theorem (Theorem 2.2.6)

Suppose $A \in \mathbb{C}^{n \times n}$ is a Hessenberg matrix. Let H_{i} be generated as follows $H_{1}=A$

$$
H_{i+1}=G_{i}^{T} H_{i}, \quad i=1, \ldots, n-1
$$

where

$$
G_{i}=G\left(i, i+1,\left(H_{i}\right)_{i, i} / r_{i},\left(H_{i}\right)_{i+1, i} / r_{i}\right)
$$

and $r_{i}=\sqrt{\left(H_{i}\right)_{i, i}^{2}+\left(H_{i}\right)_{i+1, i}^{2}}$ and we assume $r_{i} \neq 0$. Then, H_{n} is upper triangular and

$$
A=\left(G_{1} G_{2} \cdots G_{n-1}\right) H_{n}=Q R
$$

is a $Q R$-factorization of A.

The Q-matrix in the QR-factorization of a Hessenberg matrix can be factorized as a product of $n-1$ Givens rotators.

Theorem (Theorem 2.2.6)

Suppose $A \in \mathbb{C}^{n \times n}$ is a Hessenberg matrix. Let H_{i} be generated as follows $H_{1}=A$

$$
H_{i+1}=G_{i}^{\top} H_{i}, \quad i=1, \ldots, n-1
$$

where

$$
G_{i}=G\left(i, i+1,\left(H_{i}\right)_{i, i} / r_{i},\left(H_{i}\right)_{i+1, i} / r_{i}\right)
$$

and $r_{i}=\sqrt{\left(H_{i}\right)_{i, i}^{2}+\left(H_{i}\right)_{i+1, i}^{2}}$ and we assume $r_{i} \neq 0$. Then, H_{n} is upper triangular and

$$
A=\left(G_{1} G_{2} \cdots G_{n-1}\right) H_{n}=Q R
$$

is a $Q R$-factorization of A.

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix but only implicitly apply the Givens rotators

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix but only implicitly apply the Givens rotators: Let

$$
A_{k-1}=\left(G_{1} G_{2} \cdots G_{n-1}\right) R_{n}
$$

and

$$
A_{k}=R_{n}\left(G_{1} G_{2} \cdots G_{n-1}\right)=
$$

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix but only implicitly apply the Givens rotators: Let

$$
A_{k-1}=\left(G_{1} G_{2} \cdots G_{n-1}\right) R_{n}
$$

and

$$
A_{k}=R_{n}\left(G_{1} G_{2} \cdots G_{n-1}\right)=\left(\cdots\left(\left(R_{n} G_{1}\right) G_{2}\right) \cdots\right) G_{n-1}
$$

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix but only implicitly apply the Givens rotators: Let

$$
A_{k-1}=\left(G_{1} G_{2} \cdots G_{n-1}\right) R_{n}
$$

and

$$
A_{k}=R_{n}\left(G_{1} G_{2} \cdots G_{n-1}\right)=\left(\cdots\left(\left(R_{n} G_{1}\right) G_{2}\right) \cdots\right) G_{n-1}
$$

Complexity of one QR-step for a Hessenberg matrix
We need to apply $2(n-1)$ givens rotators to compute one QR-step.

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix but only implicitly apply the Givens rotators: Let

$$
A_{k-1}=\left(G_{1} G_{2} \cdots G_{n-1}\right) R_{n}
$$

and

$$
A_{k}=R_{n}\left(G_{1} G_{2} \cdots G_{n-1}\right)=\left(\cdots\left(\left(R_{n} G_{1}\right) G_{2}\right) \cdots\right) G_{n-1}
$$

Complexity of one QR-step for a Hessenberg matrix

We need to apply $2(n-1)$ givens rotators to compute one QR-step.

- One givens rotator applied to a vector can be computed in $O(1)$ operations.

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix but only implicitly apply the Givens rotators: Let

$$
A_{k-1}=\left(G_{1} G_{2} \cdots G_{n-1}\right) R_{n}
$$

and

$$
A_{k}=R_{n}\left(G_{1} G_{2} \cdots G_{n-1}\right)=\left(\cdots\left(\left(R_{n} G_{1}\right) G_{2}\right) \cdots\right) G_{n-1}
$$

Complexity of one QR-step for a Hessenberg matrix

We need to apply $2(n-1)$ givens rotators to compute one QR-step.

- One givens rotator applied to a vector can be computed in $O(1)$ operations.
- One givens rotator applied to matrix can be computed in $O(n)$ operations.

Idea of Hessenberg QR-method: Do not explicitly compute the Q-matrix but only implicitly apply the Givens rotators: Let

$$
A_{k-1}=\left(G_{1} G_{2} \cdots G_{n-1}\right) R_{n}
$$

and

$$
A_{k}=R_{n}\left(G_{1} G_{2} \cdots G_{n-1}\right)=\left(\cdots\left(\left(R_{n} G_{1}\right) G_{2}\right) \cdots\right) G_{n-1}
$$

Complexity of one QR-step for a Hessenberg matrix

We need to apply $2(n-1)$ givens rotators to compute one QR-step.

- One givens rotator applied to a vector can be computed in $O(1)$ operations.
- One givens rotator applied to matrix can be computed in $O(n)$ operations.
\Rightarrow

$$
\text { the complexity of one Hessenberg QR step }=\mathcal{O}\left(n^{2}\right)
$$

Givens rotators only modify very few elements.
Several optimizations possible. \Rightarrow

```
Algorithm 3 Hessenberg QR algorithm
Input: A Hessenberg matrix \(A \in \mathrm{C}^{n \times n}\)
Output: Upper triangular \(T\) such that \(A=U T U^{*}\) for an orthogonal
    matrix \(U\).
    Set \(A_{0}:=A\)
    for \(k=1, \ldots\) do
        // One Hessenberg QR step
        \(H=A_{k-1}\)
        for \(i=1, \ldots, n-1\) do
        \(\left[c_{i}, s_{i}\right]=\operatorname{givens}\left(h_{i, i}, h_{i+1, i}\right)\)
        \(H_{i: i+1, i: n}=\left[\begin{array}{cc}c_{i} & s_{i} \\ -s_{i} & c_{i}\end{array}\right] H_{i: i+1, i: n}\)
        end for
        for \(i=1, \ldots, n-1\) do
            \(H_{1: i+1, i: i+1}=H_{1: i+1, i: i+1}\left[\begin{array}{cc}c_{i} & -s_{i} \\ s_{i} & c_{i}\end{array}\right]\)
        end for
        \(A_{k}=H\)
    end for
    Return \(T=A_{\infty}\)
```

