Theory of PDE MM8008/SF2739 Homework.

John Andersson johnan@kth.se

Due date: 12th December at 23:59.¹ **Do not forget to add your name,** email and Swedish personal id number (if you have one) to your solutions.

Marks: Maximum 9 marks. To pass you need 7 or more marks.

1. Let $S : \mathcal{B} \mapsto \mathcal{B}$ be a linear and continuous operator on the Banach space \mathcal{B} . **a)** Show that

$$\operatorname{Ker}(S) = \{ x \in \mathcal{B}; \ Sx = 0 \}$$

is a closed subspace.

[2 marks]

b) If \mathcal{B} is a Hilbert space show that the orthogonal complement of Ker(S) is also closed.

[2 marks]

2. Let $T: L^2([0,1]) \mapsto L^2([0,1])$ be defined by

$$Tf(x) = \int_0^1 f(x) dx.$$

[1 mark]

b) Show that T is compact.

[1 mark]

c) For which $\lambda \in \mathbb{R}$ is $I - \lambda T$ invertable?

[1 mark]

d) For each $\lambda \in \mathbb{R}$ such that $I - \lambda T$ is not invertable, find the range and kernel of $I - \lambda T$.

[2 marks]

a) Find the dual of T.

 $^{^{1}}$ If you email your solutions email me a PDF file that is either computer written or a scan of your handwritten solutions. Do not send me photos of your solution since they are usually very difficult to read.