Theory of PDE MM8008/SF2739 Homework.

John Andersson johnan@kth.se

Due date: 28th November at 23:59.¹ Do not forget to add your name, email and Swedish personal id number (if you have one) to your solutions.

Marks: Maximum 10 marks. To pass you need 7 or more marks.

1. Let l^2 consist of all sequences $\{x_n\}_{n=1}^{\infty}$. We will identify each vector $\mathbf{x} \in l^2$ with a formal series $\sum_{n=1}^{\infty} x_n e_n$ (think of $e_1 = (1, 0, 0, ..., e_2 = (0, 1, 0, 0, ...)$ et.c.). We equip l^2 with the inner product $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{n=1}^{\infty} x_n y_n$ and corresponding norm $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$.

a) Define the operator $T: l^2 \mapsto l^2$ according to

$$T\mathbf{x} = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} a_{kn} x_k \right) e_n,$$

where

$$a_{kn} = \frac{1}{n+2k}$$

Show directly, without any reference to the theorem, that T is compact. That is if $\mathbf{x}^{j} \in l^{2}$ is a bounded sequence. Then there exists a subsequence such that $T\mathbf{x}^{k_{j}}$ converges.

[3 marks]

b) What is the dual of T? (T is demined as in a)).

[1 mark]

2. In this exercise we will motivate going from an integral on $\partial D \cap B'_{\epsilon}(2\epsilon)$ in (20). To that end let $\Sigma = \{(x', f(x')); |x'| \leq 1\}$ be the graph of the function continuously differentiable function f(x') with bounded gradient.

Show that for any continuous function $g \in C(\Sigma)$ there exist a constant C_f such that

$$\int_{\Sigma} |g(x)| d\sigma(x) \le C_f \int_{B_1'(0)} |g(x', f(x'))| dx',$$

where the constant C only depend on $\sup_{x' \in B'_1(0)} |\nabla f(x')|$ but not on g^2 .

 $^{^1{\}rm If}$ you email your solutions email me a PDF file that is either computer written or a scan of your handwritten solutions. Do not send me photos of your solution since they are usually very difficult to read.

²Here we use the standard mathematical practise to call C_f a constant even though it will be a function of $\sup_{x' \in B'_1(0)} |\nabla f(x')|$. The important thing is that for a given function f we can use the same constant for all functions $g \in C(\Sigma)$.

[3 marks]

3. Let $L(\mathcal{B}, \mathcal{B})$ be the space of all bounded linear functionals $T : \mathcal{B} \mapsto \mathcal{B}$. prove that $L(\mathcal{B}, \mathcal{B})$ is a Banach space under the norm

$$||T|| = \sup_{x \in \mathcal{B}, x \neq 0} \frac{||Tx||}{||x||}.$$

[3 marks]