Tutorial 6: FEM for Engineering Applications (SE1025)

Ceccato Chiara, ceccato@kth.se

6.2 One way to satisfy compatibility across element
boundaries between regions of high to low order elements
1s to use transition elements. A plane triangular transition
element 1s shown m Figure 4. The shape functions for the
vertex nodes of the element are displayed below the ele-
ment. Determine the shape function associated with node 4
and show that 1t fulfil standard requirements put on shape
functions.

6.3 A plate containing a circular hole with radius R 1s mod-
elled by use of plane 8-noded bi-quadratic isoparametric
elements. The figure to the right shows one such element
located at the hole of the plate. The element 1s symmetri-
cally located with respect to the y-axis and extends one
quarter of the circumference of the hole. 1.e. the straight ele-

ment sides: 2-6-3 and 1-8-4, respectively, form 45° angles
with respect to the y-axis. The nodes 1, 5 and 2 are placed at
the border of the hole. Determine the distance from the cen-

tre of the hole to the point {x,, y,}. defined by the natural
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coordinates § = g, = 172, n = N, = —1L. 1e. calcu-
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late ,/(xy + ;). How much does this point deviate from the geometric boundary (the radius)

of the circular hole?

The shape functions of the element are:
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6.4 The Figure to the right shows a plane bi-linear 1soparametric
4-node element. The order of node numbering is opposite the
one used in the natural coordinate system (&, 1n). As a conse-
quence, the determmant of the Jacobi matrix becomes negative.
The element stiffness matrix, which is calculated by area te-
gration 1n the natural coordinate system, will then also become
negative. A FEM-analysis with such an element will “crash™.
Calculate the determinant of the Jacobi matrix for the element
with the erroneous node numbering to the right.

6.19 A rectangular plate of thickness / rotates with a constant angular velocity @ see Figure
(a) below. The material of the plate 1s 1sotropic linear elastic with elasticity modulus E, Pois-
son’s ratio vand has density p. Plane stress 1s assumed to prevail 1n the plate and that v= 0. If
the symmetry of the problem is considered and utilized, the plate can be modelled by only two
bi-linear 1soparametric elements according to Figure (b) below. The node coordmates 1s evi-
dent from the figure. The inertia forces due to the angular velocity @ can be addressed by
mtroducing the body forces K = p(ozx and K, = 0 into the FEM analysis.

(a) Determine the contribution from the body force to the node force vector in element 2.
Hint: the coordinate transformation x = (3 + §)L, v = nL is useful in element 2.

(b) The resultant node displacements, D, corresponding to the current load is given in the
figure below. Calculate the stresses at the three pownts: {x=0,y =0}, {x=L, y=0}, {x
= 2L, y = 0}. The exact solution for the normal stress i the x-direction can be
expressed as 6,.(x) = (p® L™/2)(16—(x/L)"). How much does the FEM solution
deviates from the exact solution at the three points? At which pomt do the solutions
deviate the least?

Hint: the Jacobi matrix of the coordinate transformation is J = L 1. where 1 is a unit

matrix of dimension 2.
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Exercise 6.2
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Recall Important Characteristic of Shape Functions:

1)

2)

3)

4)

5)

Interpolation Condition

The shape function has a unit value at node -i and zero in all other nodes

Local Support Condition

Vanishes over any element boundary which does not include node -i

Inter-element Compatibility Condition

Satisfies Co continuity between adjacent elements over any element boundary that includes node
-i

Completeness Condition

The interpolation is able to represent any displacement field which is a linear polynomial in X and
Y.

Partition of units properties

The sum of all the shape functions in each point must be 1

We know all the shape functions except for one, so we can use the last property

Ny=1-¢(3-2(E+n)—n
N, =8QE+n)—1)
N; =n



OK!

N, + N, +N;s+ Ny =1
& N,=1—N; — N, — N
oN=1-(1-¢B-2¢+n)-n)-(EQE+nN-1)—-m

N, =(.)=

Ny =4E1—-&—n)

Node (i) [ ($;,m;)
1 (0,0)
2 (1,0)
3 (0,1)
4 | (050

Properties 1 and 2 Satisfied
N,(§E=0,n=0)=4-0-(1-0-0)=0
N,(éE=1,m=0)=4-1-(1-1-0)=0
N,((=0,n=1)=4-0-(1-0-1)=0
Ny(E=05n=0)=4-05-(1-05-0)=1



Exercise 6.3

1 1
Ny =—7A=HA-mA+E+n) Ns =51 -0
Ny= O DA E ) Mo =31+ 1 7?)
1 1
Ny =20 +HA+mME & N, == =§H0+m
Ny~ 21D+ M)A+ ) Ny =5 (1= 1~ 7?)

Find the distance from the origin of the node :

(X0, ¥0) == ({ =&, = %»W =1, = _1)

We have to transform the local coordinates to global coordinates:

We know the definition of global coordinates (x,y) from the nodal global coordinates (x;, yi) and the shape
functions:

(€=€o=7},n=no=—1)

We compute the shape function in the point of interest

And we need the global coordinates of the nodes (x;, yi) for the interpolation:

[J-ranaonf]

First we compute the shape functions at the node of interest:
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Only N1, N2, N5 are non-zero, so for the interpolation we only need the global coordinates of nodes
1,2,5.

We know from the geometry the global coordinates of nodes 1, 2, 5:

n Ti Yi

1 —R/V2 R/V2
2 R/V2 R/V2
5 0 R

i

] = e [f] = R A U {f |

We can compute now the distance from the center

Compare with the real geometry:

Geometry = RFEM — ‘x(Z) _|_ yg- —
2
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NOTE:

The geometry is approximated through the mesh and their shape functions:

12 elements 24 elements 544 elements



Exercise 6.4

Importance of node ordering:

GLOBAL LOCAL

Clockwise Anti-clockwise

Compute the determinant of the Jacobian:

/ 4 xi(xiy)!yi(x!y)

WOl o o | #= 2N [ v =a—oa o

N = |% % 1 Ny = (1+§)(1—1n)/4
0 Oyl |y = Ny | | Na=(+O+m)/4

on o Ny=(1-8)(1+n)/4




Step 1:

(0,L)
o From the geometry:
x1 = (x1, 1) = (0,1)
N xz = (x2,y2) = (L,0)
_ x3 = (x3,¥3) = (0,—L)
( LJ O) o o (L’O) X4:(X4,y4):(—L,O)
From the shape functions:
© Ny =(1-O1-m)/4
Ny =1+ -n)/4
(0,—L) Ny = (1+&)(1+n)/4
Ny ==L +n)/4
Step 2:
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Exercise 6.19
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a) Determine the contribution from the body force to the node force vector in ELEMENT 2

Body Force Data:

F,, = | NTK,dV,

Ve

v

0N20N30N40]

N—[N1
—lo N, O N, 0O Ny, O N,

Shape Functions for the Iso-Parametric Elements:

Ny =31 -HA - o
Ny =3+ O ) %=
Ny =3+ OA )
Ny=2A -0+

The global coordinates are :

(2L, L)
(4)
y
T_’ ELEMENT
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\ dV =h-dA,, =h-dx-dy

dAyy = [J|ddn
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Coordinate Transformation

4
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So we compute the integral in LOCAL:
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Determine the stress in the following points:

(1) x1=0, y1=0;
(2) XZ:LI V2:0;
(3) X3=2|.,' y3=0

The stress needs to be computed locally. All the points are in Element 1.

Constitutive Matrix

a:che\
1 v 0
c— E v 1 o0
— 2 1~
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2 del
{v=0}
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Note about the Displacement Vector del
GLOBAL LOCAL
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Displacement Vector
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