Tutorial 4: FEM for Engineering Applications (SE1025)

Chiara Ceccato, ceccato@kth.se
6.14 Consider a thin quadratic sheet metal of size $l \times l$ and thickness h of a linear elastic material (E, $v)$. Model the sheet metal by use of two linear triangular elements (CST-element) and carry out FEM analyses for the three different load cases (a), (b) and (c). Introduce appropriate displacement boundary conditions, where symmetry conditions can be utilized, and determine node displacements and stresses in the elements. For simplicity, let Poisson's ratio be $v=0$.
Load cases: (a) uniaxial tension,

(a)

(b) pure shear,
(c) dead weight, where ρ is the density and g acceleration of gravity.

Formulas

Plane (2D) triangular linear element:

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right]=\left[\begin{array}{ccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} \\
0 \\
0 & N_{1} & 0 & N_{2} & 0
\end{array} N_{3}\right.}
\end{array}\right] \mathbf{d}_{e}=\mathbf{N} \mathbf{d}_{e}, ~\left(x_{1}=\frac{1}{2 A_{e}}\left[\left(y_{2}-y_{3}\right)\left(x-x_{2}\right)+\left(x_{3}-x_{2}\right)\left(y-y_{2}\right)\right] \quad \begin{array}{l}
N_{2}=\frac{1}{2 A_{e}}\left[\left(y_{3}-y_{1}\right)\left(x-x_{3}\right)+\left(x_{1}-x_{3}\right)\left(y-y_{3}\right)\right] \\
N_{3}=\frac{1}{2 A_{e}}\left[\left(y_{1}-y_{2}\right)\left(x-x_{1}\right)+\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)\right]
\end{array}\right.
$$

$$
\mathbf{d}_{e}=\left[\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y} \\
d_{3 x} \\
d_{3 y}
\end{array}\right]
$$

Strains:

$$
\left[\begin{array}{c}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\gamma_{x y}
\end{array}\right]=\mathbf{B ~ d}_{e} \quad \mathbf{B}=\left[\begin{array}{lll}
\mathbf{B}_{1} & \mathbf{B}_{2} & \mathbf{B}_{3}
\end{array}\right] \quad \mathbf{B}_{i}=\left[\begin{array}{cc}
\partial N_{i} / \partial x & 0 \\
0 & \partial N_{i} / \partial y \\
\partial N_{i} / \partial y & \partial N_{i} / \partial x
\end{array}\right]
$$

Stresses:

$$
\left[\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right]=\frac{E}{\left(1-v^{2}\right)}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & (1-v) / 2
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
y_{x y}
\end{array}\right] \quad \text { (Plane stress) }
$$

Solution

Theory Recall

The FEM equilibrium equation for the element is:

$$
\int_{V_{e}} \mathbf{B}^{\top} \mathbf{C B} d V \mathbf{d}_{\mathbf{e}}=\int_{S_{e}} \mathbf{N}^{\top} \mathbf{t} d S+\int_{V_{e}} \mathbf{N}^{\top} \mathbf{K} d V
$$

The displacement field is given by:

$$
\left[\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right]=\left[\begin{array}{cccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 \\
0 & N_{1} & 0 & N_{2} & 0 & N_{3}
\end{array}\right]\left[\begin{array}{l}
d_{1 x} \\
d_{1 y} \\
d_{2 x} \\
d_{2 y} \\
d_{3 x} \\
d_{3 y}
\end{array}\right]
$$

The shape functions are:

$$
\begin{aligned}
& N_{1}(x, y)=\frac{1}{2 A_{e}}\left[\left(y_{2}-y_{3}\right)\left(x-x_{2}\right)+\left(x_{3}-x_{2}\right)\left(y-y_{2}\right)\right] \\
& N_{2}(x, y)=\frac{1}{2 A_{e}}\left[\left(y_{3}-y_{1}\right)\left(x-x_{3}\right)+\left(x_{1}-x_{3}\right)\left(y-y_{3}\right)\right] \\
& N_{3}(x, y)=\frac{1}{2 A_{e}}\left[\left(y_{1}-y_{2}\right)\left(x-x_{1}\right)+\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)\right]
\end{aligned}
$$

In order to compute the Stiffness Matrix:

$$
\int_{V_{e}} \mathbf{B}^{\top} \mathbf{C B} d V=\mathbf{K}_{\mathbf{e}}
$$

we need :
C: the constitutive matrix for isotropic material in plane stress condition

$$
\mathbf{C}=\frac{E}{1-\nu^{2}}\left[\begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]
$$

B: the derivative of the shape function matrix

$$
\mathbf{B}=\left[\begin{array}{cccccc}
\frac{\partial N_{1}}{\partial x} & 0 & \frac{\partial N_{2}}{\partial x} & 0 & \frac{\partial N_{3}}{\partial x} & 0 \\
0 & \frac{\partial N_{1}}{\partial y} & 0 & \frac{\partial N_{2}}{\partial y} & 0 & \frac{\partial N_{3}}{\partial y} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial x} & \frac{\partial N_{3}}{\partial y} & \frac{\partial N_{3}}{\partial x}
\end{array}\right]
$$

$$
\mathbf{B}=\frac{1}{2 A_{e}}\left[\begin{array}{cccccc}
\left(y_{2}-y_{3}\right) & 0 & \left(y_{3}-y_{1}\right) & 0 & \left(y_{1}-y_{2}\right) & 0 \\
0 & \left(x_{3}-x_{2}\right) & 0 & \left(x_{1}-x_{3}\right) & 0 & \left(x_{2}-x_{1}\right) \\
\left(x_{3}-x_{2}\right) & \left(y_{2}-y_{3}\right) & \left(x_{1}-x_{3}\right) & \left(y_{3}-y_{1}\right) & \left(x_{2}-x_{1}\right) & \left(y_{1}-y_{2}\right)
\end{array}\right]
$$

Our Problem:

2 st CST-element

$$
D^{T}=\left[\begin{array}{llllllll}
D_{1 x} & D_{1 y} & D_{2 x} & D_{2 y} & D_{3 x} & D_{3 y} & D_{4 x} & D_{4 y}
\end{array}\right]
$$

$$
\boldsymbol{F}^{T}=\left[\begin{array}{llllllll}
F_{1 x} & F_{1 y} & F_{2 x} & F_{2 y} & F_{3 x} & F_{3 y} & F_{4 x} & F_{4 y}
\end{array}\right]
$$

$$
\boldsymbol{k}_{e}=\int_{V_{e}} \boldsymbol{B}^{T} C B d V \Rightarrow \boldsymbol{k}_{e}=\int_{A_{e}} h \boldsymbol{B}^{T} \boldsymbol{C B} d A
$$

We consider the elements:

Constitutive behavior:

$$
\boldsymbol{C}=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right] \Rightarrow \boldsymbol{C}=E\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right] \quad v=0
$$

Element 1:

$$
\begin{gathered}
\boldsymbol{k}_{e 1}=\int_{A_{e}} h \boldsymbol{B}_{e 1}^{T} \boldsymbol{C} \boldsymbol{B}_{e 1} d A=h \int_{A_{e}} \underbrace{}_{\underbrace{\boldsymbol{B}_{e 1}^{T}}_{\text {constant }} \underbrace{\boldsymbol{C}} \boldsymbol{B}_{e 1}} d A=A_{1} h \boldsymbol{B}_{e 1}^{T} \boldsymbol{C} \boldsymbol{B}_{e 1}=\frac{l}{2} h \boldsymbol{B}_{e 1}^{T} \boldsymbol{C} \boldsymbol{B}_{e 1} \\
\Rightarrow \boldsymbol{B}_{e 1}=\left[\begin{array}{cccccc}
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 \\
-1 & -1 & 0 & 1 & 1 & 0
\end{array}\right]=\frac{1}{l}\left[\begin{array}{cccccc}
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 \\
-1 & -1 & 0 & 1 & 1 & 0
\end{array}\right] \\
\boldsymbol{k}_{e 1}=\frac{E h}{4}\left[\begin{array}{cccccc}
3 & 1 & -2 & -1 & -1 & 0 \\
1 & 3 & 0 & -1 & -1 & -2 \\
-2 & 0 & 2 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 1 & 0 \\
-1 & -1 & 0 & 1 & 1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2
\end{array}\right]
\end{gathered}
$$

Element 2:

$$
\begin{aligned}
& \boldsymbol{k}_{e 2}=\int_{A_{e}} h \boldsymbol{B}_{e 2}^{T} \boldsymbol{C} \boldsymbol{B}_{e 2} d A=h \int_{A_{e}} \underbrace{\boldsymbol{B}_{e 2}}_{\text {constant }} \underbrace{\boldsymbol{\boldsymbol { B }}}_{\underline{\boldsymbol{B}}} \underbrace{2} d A=A_{2} h \boldsymbol{B}_{e 2}^{T} \boldsymbol{C} \boldsymbol{B}_{e 2}=\frac{l^{2}}{2} h \boldsymbol{B}_{e 2}^{T} \boldsymbol{C} \boldsymbol{B}_{e 2} \\
& \Rightarrow \boldsymbol{B}_{e 2}=\frac{l}{2 A e, 2}\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 1 & 1 & -1
\end{array}\right]=\frac{1}{l}\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 1 & 1 & -1
\end{array}\right] \\
& \boldsymbol{k}_{e 2}=\frac{E h}{4}\left[\begin{array}{cccccc}
1 & 0 & -1 & -1 & 0 & 1 \\
0 & 2 & 0 & -2 & 0 & 0 \\
-1 & 0 & 3 & 1 & -2 & -1 \\
-1 & -2 & 1 & 3 & 0 & -1 \\
0 & 0 & -2 & 0 & 2 & 0 \\
1 & 0 & -1 & -1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Assembling:

$$
\begin{aligned}
& \boldsymbol{k}_{e 1}=\frac{E h}{4}\left[\begin{array}{cccccc}
1 x & 1 y & 2 x & 2 y & 4 x & 4 y \\
3 & 1 & -2 & -1 & -1 & 0 \\
1 & 3 & 0 & -1 & -1 & -2 \\
-2 & 0 & 2 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 1 & 0 \\
-1 & -1 & 0 & 1 & 1 & 0 \\
0 & -2 & 0 & 0 & 0 & 2
\end{array}\right] \begin{array}{c}
1 x \\
2 x \\
2 y \\
4 x \\
4 y
\end{array} \quad \boldsymbol{k}_{e 2}=\frac{E h}{4}\left[\begin{array}{cccccc}
2 x & 2 y & 3 x & 3 y & 4 x & 4 y \\
1 & 0 & -1 & -1 & 0 & 1 \\
0 & 2 & 0 & -2 & 0 & 0 \\
-1 & 0 & 3 & 1 & -2 & -1 \\
-1 & -2 & 1 & 3 & 0 & -1 \\
0 & 0 & -2 & 0 & 2 & 0 \\
1 & 0 & -1 & -1 & 0 & 1
\end{array}\right] 3 x \\
& \Rightarrow \boldsymbol{K}=\frac{E h}{4}\left[\begin{array}{cccccccc}
1 x & { }^{1 y} & { }^{2 x} & 2 y & 3 x & 3 y & { }^{3 x} & 4 y \\
+3 & +1 & -2 & -1 & 0 & 0 & -1 & 0 \\
+1 & +3 & 0 & -1 & 0 & 0 & -1 & -2 \\
-2 & 0 & +2+1 & 0 & -1 & -1 & 0 & +1 \\
-1 & -1 & 0 & +1+2 & 0 & -2 & +1 & 0 \\
0 & 0 & -1 & 0 & +3 & +1 & -2 & -1 \\
0 & 0 & -1 & -2 & +1 & +3 & 0 & -1 \\
-1 & -1 & 0 & +1 & -2 & 0 & +1+2 & 0 \\
0 & -2 & +1+1 & 0 & -1 & -1 & 0 & +2+1
\end{array}\right] \begin{array}{l}
1 x \\
{ }^{2} y \\
2 x \\
3 y \\
3 y \\
4 y \\
\\
4 y
\end{array} \\
& \Leftrightarrow \boldsymbol{K}=\frac{E h}{4}\left[\begin{array}{cccccccc}
3 & 1 & -2 & -1 & 0 & 0 & -1 & 0 \\
1 & 3 & 0 & -1 & 0 & 0 & -1 & -2 \\
-2 & 0 & 3 & 0 & -1 & -1 & 0 & 1 \\
-1 & -1 & 0 & 3 & 0 & -2 & 1 & 0 \\
0 & 0 & -1 & 0 & 3 & 1 & -2 & -1 \\
0 & 0 & -1 & -2 & 1 & 3 & 0 & -1 \\
-1 & -1 & 0 & 1 & -2 & 0 & 3 & 0 \\
0 & -2 & 1 & 0 & -1 & -1 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Vector of forces

The expression of the element force vector for the CST comes from

$$
\left[\int_{V_{e}} \boldsymbol{B}^{T} \boldsymbol{C} \boldsymbol{B} d V\right] \boldsymbol{d}_{e}=\underbrace{\left[\int_{S_{e}} \boldsymbol{N}^{T} \boldsymbol{t} d S+\int_{V_{e}} \boldsymbol{N}^{T} \boldsymbol{K}_{\boldsymbol{b}} d V\right]}_{\boldsymbol{F}_{\boldsymbol{e}}}
$$

LOAD CASE 1:

Vector of Nodal Forces:

$$
\Rightarrow \boldsymbol{F}_{n o d}^{T}=\left[\begin{array}{llllllll}
R_{1 x} & R_{1 y} & 0 & R_{2 y} & 0 & 0 & R_{4 x} & 0
\end{array}\right]
$$

Vector of Superficial Forces:
(they act only on Element 2)

$$
\begin{aligned}
& \Rightarrow \boldsymbol{F}_{s, 2}^{T}=\frac{\sigma_{0} h l}{2}\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\boldsymbol{F}=\boldsymbol{F}_{n o d}+\boldsymbol{F}_{s}=\left[\begin{array}{c}
R_{1 x} \\
R_{1 y} \\
0 \\
R_{2 y} \\
0 \\
0 \\
R_{4 x} \\
0
\end{array}\right]+\frac{\sigma_{0} h l}{2}\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
R_{1 x} \\
R_{1 y} \\
\frac{\sigma_{0} h l}{2} \\
R_{2 y} \\
\frac{\sigma_{0} h l}{2} \\
0 \\
R_{4 x} \\
0
\end{array}\right]
$$

Solving the system:

Displacements:

$$
\Rightarrow\left[\begin{array}{l}
D_{2 x} \\
D_{3 x} \\
D_{3 y} \\
D_{4 y}
\end{array}\right]=\frac{\sigma_{0} l}{E}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Forces:

$$
\left[\begin{array}{c}
R_{1 x} \\
R_{1 y} \\
\sigma_{0} h l \\
\hline 2 \\
R_{2 y} \\
\frac{\sigma_{0} h l}{2} \\
0 \\
R_{4 x} \\
0
\end{array}\right]=\frac{E h}{4}\left[\begin{array}{cccccccc}
3 & 1 & -2 & -1 & 0 & 0 & -1 & 0 \\
1 & 3 & 0 & -1 & 0 & 0 & -1 & -2 \\
-2 & 0 & 3 & 0 & -1 & -1 & 0 & 1 \\
-1 & -1 & 0 & 3 & 0 & -2 & 1 & 0 \\
0 & 0 & -1 & 0 & 3 & 1 & -2 & -1 \\
0 & 0 & -1 & -2 & 1 & 3 & 0 & -1 \\
-1 & -1 & 0 & 1 & -2 & 0 & 3 & 0 \\
0 & -2 & 1 & 0 & -1 & -1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\sigma_{0} l \\
E \\
0 \\
\frac{\sigma_{0} l}{E} \\
0 \\
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
R_{1 x} \\
R_{1 y} \\
R_{2 y} \\
R_{4 x}
\end{array}\right]=\frac{\sigma_{0} h l}{2}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1
\end{array}\right]
$$

Post- Processing

Element 1

Element 2

We only have tension in the X direction. OK !

LOAD CASE 3:

Force Vector

Nodal Force Vector
$\Rightarrow \boldsymbol{F}_{\text {nod }}^{T}=\left[\begin{array}{llllllll}R_{1 x} & R_{1 y} & 0 & R_{2 y} & 0 & 0 & 0 & 0\end{array}\right]$

Body Force Vector:

$$
\begin{aligned}
& \boldsymbol{F}_{b, e}=\int_{V_{e}} \boldsymbol{N}^{T} \boldsymbol{K}_{b} d V \\
& \Rightarrow \boldsymbol{F}_{b, e}=\int_{V_{e}}\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2} \\
N_{3} & 0 \\
0 & N_{3}
\end{array}\right]\left[\begin{array}{l}
K_{x} \\
K_{y}
\end{array}\right] d V=\int_{A_{e}}\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2} \\
N_{3} & 0 \\
0 & N_{3}
\end{array}\right]\left[\begin{array}{l}
{\left[\begin{array}{l}
K_{x} \\
K_{y}
\end{array}\right] h d A=\iint\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2} \\
N_{3} & 0 \\
0 & N_{3}
\end{array}\right]\left[\begin{array}{l}
K_{x} \\
K_{y}
\end{array}\right] h \cdot d x \cdot d y} \\
\Rightarrow \boldsymbol{F}_{b, 1}=\int_{0}^{l} \int_{0}^{l-x}\left[\begin{array}{cc}
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2} \\
N_{3} & 0 \\
0 & N_{3}
\end{array}\right]\left[\begin{array}{c}
0 \\
-\rho g
\end{array}\right] h \cdot d y \cdot d x=(\ldots) \\
\Rightarrow \boldsymbol{F}_{b, 2} \int_{0}^{l} \int_{l-x}^{l}\left[\begin{array}{cc}
l \\
N_{1} & 0 \\
0 & N_{1} \\
N_{2} & 0 \\
0 & N_{2} \\
N_{3} & 0 \\
0 & N_{3}
\end{array}\right]\left[\begin{array}{c}
0 \\
-\rho g
\end{array}\right] h \cdot d y \cdot d x=(\ldots)
\end{array}\right.
\end{aligned}
$$

Element 1:

$$
\Rightarrow \boldsymbol{F}_{b, 1}=\int_{0}^{l} \int_{0}^{l-x}-\rho g\left[\begin{array}{c}
1-\frac{x}{l}-\frac{y}{l} \\
0 \\
\frac{x}{l} \\
0 \\
\frac{y}{l}
\end{array}\right] h \cdot d y \cdot d x=-\frac{\rho g h}{2 l} \int_{0}^{l}\left[\begin{array}{c}
0 \\
l^{2}-2 l x+x^{2} \\
0 \\
2 l x-2 x^{2} \\
0 \\
l^{2}-2 l x+x^{2}
\end{array}\right] d x=-\frac{\rho g h l^{2}}{6}\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]_{4 y}^{1 \mathrm{xx}}
$$

Element 2:
$\Rightarrow \boldsymbol{F}_{b, 2}=\int_{0}^{l} \int_{l-x}^{l}-\rho g\left[\begin{array}{c}0 \\ 1-\frac{y}{l} \\ \frac{x}{l} \\ \frac{0}{l} \frac{y}{l}-1 \\ 0 \\ 1-\frac{x}{l}\end{array}\right] h \cdot d y \cdot d x=\cdots=-\frac{\rho g h l^{2}}{6}\left[\begin{array}{c}0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right] \begin{gathered}2 x \\ 2 y \\ 3 y \\ 4 y \\ 4 x \\ 4 y \\ 4 y \\ y\end{gathered}$

$$
\boldsymbol{F}=\boldsymbol{F}_{\boldsymbol{n o d}}+\boldsymbol{F}_{\boldsymbol{b}, \boldsymbol{1}}+\boldsymbol{F}_{\boldsymbol{b}, \mathbf{2}}=\left[\begin{array}{c}
R_{1 x} \\
R_{1 y} \\
0 \\
R_{2 y} \\
0 \\
0 \\
0 \\
0
\end{array}\right]-\frac{\rho g h l^{2}}{6}\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]-\frac{\rho g h l^{2}}{6}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
R_{1 x} \\
R_{1 y}-\frac{\rho g h l^{2}}{6} \\
0 \\
R_{2 y}-\frac{\rho g h l^{2}}{3} \\
0 \\
-\frac{\rho g h l^{2}}{6} \\
0 \\
-\frac{\rho g h l^{2}}{3}
\end{array}\right]
$$

Solving the system.

$$
\begin{gathered}
{\left[\begin{array}{c}
R_{1 x} \\
R_{1 y}-\frac{\rho g h l^{2}}{6} \\
0 \\
R_{2 y}-\frac{\rho g h l^{2}}{3} \\
0 \\
-\frac{\rho g h l^{2}}{6} \\
0 \\
-\frac{\rho g h l^{2}}{3}
\end{array}\right]=\frac{E h}{4}\left[\begin{array}{cccccccc}
3 & 1 & -2 & -1 & 0 & 0 & -1 & 0 \\
1 & 3 & 0 & -1 & 0 & 0 & -1 & -2 \\
-2 & 0 & 3 & 0 & -1 & -1 & 0 & 1 \\
-1 & -1 & 0 & 3 & 0 & -2 & 1 & 0 \\
0 & 0 & -1 & 0 & 3 & 1 & -2 & -1 \\
0 & 0 & -1 & -2 & 1 & 3 & 0 & -1 \\
-1 & -1 & 0 & 1 & -2 & 0 & 3 & 0 \\
0 & -2 & 1 & 0 & -1 & -1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
D_{2 x} \\
0 \\
D_{3 x} \\
D_{3 y} \\
D_{4 x} \\
D_{4 y}
\end{array}\right]} \\
\\
\\
\Rightarrow \boldsymbol{F}_{\text {red }}=\boldsymbol{K}_{\text {red }} \boldsymbol{D}_{\text {red }} \Leftrightarrow
\end{gathered}
$$

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{\rho g h l^{2}}{6} \\
0 \\
-\frac{\rho g h l^{2}}{3}
\end{array}\right]=\frac{E h}{4}\left[\begin{array}{ccccc}
3 & -1 & -1 & 0 & 1 \\
-1 & 3 & 1 & -2 & -1 \\
-1 & 1 & 3 & 0 & -1 \\
0 & -2 & 0 & 3 & 0 \\
1 & -1 & -1 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
D_{2 x} \\
D_{3 x} \\
D_{3 y} \\
D_{4 x} \\
D_{4 y}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
D_{2 x} \\
D_{3 x} \\
D_{3 y} \\
D_{4 x} \\
D_{4 y}
\end{array}\right]=\frac{\rho g l^{2}}{24 E}\left[\begin{array}{c}
1 \\
-3 \\
-9 \\
-2 \\
-15
\end{array}\right]
$$

Finding the reaction forces

$$
\left[\begin{array}{c}
R_{1 x} \\
R_{1 y}-\frac{\rho g h l^{2}}{6} \\
0 \\
R_{2 y}-\frac{\rho g h l^{2}}{3} \\
0 \\
-\frac{\rho g h l^{2}}{6} \\
0 \\
-\frac{\rho g h l^{2}}{3}
\end{array}\right]=\frac{E h}{4}\left[\begin{array}{cccccccc}
3 & 1 & -2 & -1 & 0 & 0 & -1 & 0 \\
1 & 3 & 0 & -1 & 0 & 0 & -1 & -2 \\
-2 & 0 & 3 & 0 & -1 & -1 & 0 & 1 \\
-1 & -1 & 0 & 3 & 0 & -2 & 1 & 0 \\
0 & 0 & -1 & 0 & 3 & 1 & -2 & -1 \\
0 & 0 & -1 & -2 & 1 & 3 & 0 & -1 \\
-1 & -1 & 0 & 1 & -2 & 0 & 3 & 0 \\
0 & -2 & 1 & 0 & -1 & -1 & 0 & 3
\end{array}\right] \frac{\rho g l^{2}}{24 E}\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-3 \\
-9 \\
-2 \\
-15
\end{array}\right]
$$

$$
\Rightarrow\left[\begin{array}{c}
F_{1 x} \\
F_{1 y} \\
F_{2 x} \\
F_{2 y} \\
F_{3 x} \\
F_{3 y} \\
F_{4 x} \\
F_{4 y}
\end{array}\right]=\left[\begin{array}{c}
R_{1 x} \\
R_{1 y}-\frac{\rho g h l^{2}}{6} \\
0 \\
R_{2 y}-\frac{\rho g h l^{2}}{3} \\
0 \\
-\frac{\rho g h l^{2}}{6} \\
0 \\
-\frac{\rho g h l^{2}}{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{\rho g h l^{2}}{3} \\
0 \\
\frac{\rho g h l^{2}}{6} \\
0 \\
\frac{\rho g h l^{2}}{6} \\
0 \\
-\frac{\rho g h l^{2}}{6} \\
0 \\
-\frac{\rho g h l^{2}}{3}
\end{array}\right] \Rightarrow\left[\begin{array}{c}
R_{1 x} \\
R_{1 y} \\
R_{2 y}
\end{array}\right]=\left[\begin{array}{c}
\frac{\rho g h l^{2}}{2} \\
\frac{\rho g h l^{2}}{3} \\
\frac{\rho g h l^{2}}{2}
\end{array}\right]
$$

Post-Processing

$$
\sigma=C B D_{e}
$$

$$
\boldsymbol{\sigma}_{\mathbf{1}}=\underbrace{E\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]}_{C_{v=0}} \underbrace{\frac{1}{l}\left[\begin{array}{cccccc}
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 \\
-1 & -1 & 1 & 1 & 1 & 0
\end{array}\right]}_{\boldsymbol{B}_{1}} \underbrace{\frac{\rho g l^{2}}{24 E}\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
-2 \\
-15
\end{array}\right]}_{\boldsymbol{d}_{e, 1}} \Leftrightarrow \boldsymbol{\sigma}_{\mathbf{1}}=\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=\frac{\rho g l^{2}}{24}\left[\begin{array}{c}
1 \\
-15 \\
-1
\end{array}\right]
$$

$$
\boldsymbol{\sigma}_{2}=\underbrace{E\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]}_{\left.C\right|_{v=0}} \underbrace{\frac{1}{l}\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & -1
\end{array}\right]}_{B_{2}} \frac{\rho g l^{2}}{\frac{\rho 4 E}{24 E}\left[\begin{array}{c}
1 \\
0 \\
-3 \\
-9 \\
-2 \\
-15
\end{array}\right]} \Leftrightarrow \boldsymbol{\sigma}_{1}=\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=\frac{\rho g l^{2}}{24}\left[\begin{array}{c}
-1 \\
-9 \\
1
\end{array}\right]
$$

